A symmetric, non-uniform, refine and smooth subdivision algorithm for general degree B-splines
نویسندگان
چکیده
Subdivision surfaces would find a greater number of applications if there was a scheme that included general degree NURBS as a special case. As a step towards such a scheme, we present a univariate refine and smooth subdivision algorithm that applies directly to regular regions of a surface and might, in future work, be generalised to incorporate extraordinary points. The algorithm is symmetric and non-uniform, is defined for general degree, and has similar properties to the uniform Lane-Riesenfeld refine and smooth construction.
منابع مشابه
Selective knot insertion for symmetric, non-uniform refine and smooth B-spline subdivision
NURBS surfaces can be non-uniform and defined for any degree, but existing subdivision surfaces are either uniform or of fixed degree. The resulting incompatibility forms a barrier to the adoption of subdivision for CAD applications. Motivated by the search for NURBS-compatible subdivision schemes, we present a non-uniform subdivision algorithm for B-splines in the spirit of the uniform Lane-Ri...
متن کاملNon-uniform B-Spline Subdivision Using Refine and Smooth
Subdivision surfaces would be useful in a greater number of applications if an arbitrary-degree, non-uniform scheme existed that was a generalisation of NURBS. As a step towards building such a scheme, we investigate non-uniform analogues of the Lane-Riesenfeld ‘refine and smooth’ subdivision paradigm. We show that the assumptions made in constructing such an analogue are critical, and conclude...
متن کاملNURBS-compatible subdivision surfaces
Two main technologies are available to design and represent freeform surfaces: NonUniform Rational B-Splines (NURBS) and subdivision surfaces. Both representations are built on uniform B-splines, but they extend this foundation in incompatible ways, and different industries have therefore established a preference for one representation over the other. NURBS are the dominant standard for Compute...
متن کاملNon-uniform subdivision for B-splines of arbitrary degree
We present an efficient algorithm for subdividing non-uniform B-splines of arbitrary degree in a manner similar to the Lane-Riesenfeld subdivision algorithm for uniform Bsplines of arbitrary degree. Our algorithm consists of doubling the control points followed by d rounds of non-uniform averaging similar to the d rounds of uniform averaging in the Lane-Riesenfeld algorithm for uniform B-spline...
متن کاملAnalyzing midpoint subdivision
Midpoint subdivision generalizes the Lane-Riesenfeld algorithm for uniform tensor product splines and can also be applied to non regular meshes. For example, midpoint subdivision of degree 2 is a specific Doo-Sabin algorithm and midpoint subdivision of degree 3 is a specific Catmull-Clark algorithm. In 2001, Zorin and Schröder were able to prove C1-continuity for midpoint subdivision surfaces a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Aided Geometric Design
دوره 26 شماره
صفحات -
تاریخ انتشار 2009